Sub-wavelength temperature probing in near-field laser heating by particles.

نویسندگان

  • Xiaoduan Tang
  • Yanan Yue
  • Xiangwen Chen
  • Xinwei Wang
چکیده

This work reports on the first time experimental investigation of temperature field inside silicon substrates under particle-induced near-field focusing at a sub-wavelength resolution. The noncontact Raman thermometry technique employing both Raman shift and full width at half maximum (FWHM) methods is employed to investigate the temperature rise in silicon beneath silica particles. Silica particles of three diameters (400, 800 and 1210 nm), each under four laser energy fluxes of 2.5 × 10(8), 3.8 ×10(8), 6.9 ×10(8) and 8.6 ×10(8) W/m(2), are used to investigate the effects of particle size and laser energy flux. The experimental results indicate that as the particle size or the laser energy flux increases, the temperature rise inside the substrate goes higher. Maximum temperature rises of 55.8 K (based on Raman FWHM method) and 29.3K (based on Raman shift method) are observed inside the silicon under particles of 1210 nm diameter with an incident laser of 8.6 × 10(8) W/m(2). The difference is largely due to the stress inside the silicon caused by the laser heating. To explore the mechanism of heating at the sub-wavelength scale, high-fidelity simulations are conducted on the enhanced electric and temperature fields. Modeling results agree with experiment qualitatively, and discussions are provided about the reasons for their discrepancy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoscale Probing of Thermal, Stress, and Optical Fields under Near-Field Laser Heating

Micro/nanoparticle induced near-field laser ultra-focusing and heating has been widely used in laser-assisted nanopatterning and nanolithography to pattern nanoscale features on a large-area substrate. Knowledge of the temperature and stress in the nanoscale near-field heating region is critical for process control and optimization. At present, probing of the nanoscale temperature, stress, and ...

متن کامل

Noncontact sub-10 nm temperature measurement in near-field laser heating.

An extremely focused optical field down to sub-10 nm in an apertureless near-field scanning optical microscope has been used widely in surface nanostructuring and structure characterization. The involved sub-10 nm near-field heating has not been characterized quantitatively due to the extremely small heating region. In this work, we present the first noncontact thermal probing of silicon under ...

متن کامل

Thermal probing in single microparticle and microfiber induced near-field laser focusing.

Microparticle and microfiber induced near-field laser heating has been widely used in surface nanostructuring. Information about the temperature and stress fields in the nanoscale near-field heating region is imperative for process control and optimization. Probing of this nanoscale temperature, stress, and optical fields remains a great challenge since the heating area is very small (~100 nm o...

متن کامل

Temperature Distribution of Particles in a Laser Beam

This article studies the particle temperature distribution depending on the laser radiation power and the particle’s trajectory and velocity. The uneven heating of particles moving in the laser radiation field is identified. The regimes of laser heating without melting, with partial melting, and with complete particle melting are considered.

متن کامل

Raman-based imaging and thermal characterization in near-field laser heating

Micro/nanoparticle induced nearfield laser ultrafocusing and heating has been widely used in laser-assisted nanopatterning and nanolithography to pattern nanoscale features on a large-area substrate. Probing of the temperature, stress, and optical fields induced by the nanoscale nearfield laser heating remains a great challenge since the heating area is very small (~100 nm or less) and not imme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics express

دوره 20 13  شماره 

صفحات  -

تاریخ انتشار 2012